Product
Apr 1, 2025

Overcoming The Experimentation Bottleneck

Code generation has become one of the most impressive and accessible use cases for LLMs but the ease of generation isn't the same as product differentiation. As AI-native teams explore faster ways to build, the enduring challenge is not building but learning what to build.

Overcoming The Experimentation Bottleneck

Low-code tools are going mainstream

Purus suspendisse a ornare non erat pellentesque arcu mi arcu eget tortor eu praesent curabitur porttitor ultrices sit sit amet purus urna enim eget. Habitant massa lectus tristique dictum lacus in bibendum. Velit ut viverra feugiat dui eu nisl sit massa viverra sed vitae nec sed. Nunc ornare consequat massa sagittis pellentesque tincidunt vel lacus integer risu.

  1. Vitae et erat tincidunt sed orci eget egestas facilisis amet ornare
  2. Sollicitudin integer  velit aliquet viverra urna orci semper velit dolor sit amet
  3. Vitae quis ut  luctus lobortis urna adipiscing bibendum
  4. Vitae quis ut  luctus lobortis urna adipiscing bibendum

Multilingual NLP will grow

Mauris posuere arcu lectus congue. Sed eget semper mollis felis ante. Congue risus vulputate nunc porttitor dignissim cursus viverra quis. Condimentum nisl ut sed diam lacus sed. Cursus hac massa amet cursus diam. Consequat sodales non nulla ac id bibendum eu justo condimentum. Arcu elementum non suscipit amet vitae. Consectetur penatibus diam enim eget arcu et ut a congue arcu.

Vitae quis ut  luctus lobortis urna adipiscing bibendum

Combining supervised and unsupervised machine learning methods

Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.

  • Dolor duis lorem enim eu turpis potenti nulla  laoreet volutpat semper sed.
  • Lorem a eget blandit ac neque amet amet non dapibus pulvinar.
  • Pellentesque non integer ac id imperdiet blandit sit bibendum.
  • Sit leo lorem elementum vitae faucibus quam feugiat hendrerit lectus.
Automating customer service: Tagging tickets and new era of chatbots

Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.

“Nisi consectetur velit bibendum a convallis arcu morbi lectus aecenas ultrices massa vel ut ultricies lectus elit arcu non id mattis libero amet mattis congue ipsum nibh odio in lacinia non”
Detecting fake news and cyber-bullying

Nunc ut facilisi volutpat neque est diam id sem erat aliquam elementum dolor tortor commodo et massa dictumst egestas tempor duis eget odio eu egestas nec amet suscipit posuere fames ded tortor ac ut fermentum odio ut amet urna posuere ligula volutpat cursus enim libero libero pretium faucibus nunc arcu mauris sed scelerisque cursus felis arcu sed aenean pharetra vitae suspendisse ac.

Code generation has been one of the most successful use cases for LLMs since the debut of chatGPT. Many providers offer a base model optimized for coding, and many benchmarks used to evaluate LLMs emphasize coding skills.

Some are reporting 10X'd output by "vibe-coding" with AI assistants. It's now possible to write functional code without fully understanding the underlying logic—describe what you want, and the model works out the implementation.

Mistakes occur, particularly when you prompt LLMs to write code that is very different from the training data. However, coding agents are already testing code in sandboxed environments and feeding tracebacks into debugging loops. Some even predict the commodification of high-quality code within the year. Fast feature rollout? That's table stakes now. But velocity doesn't guarantee value.

As your teams learn to tame the space of potential new candidate features, the same old challenge of discovering what matters to your users remains. We know from the collective experimentation histories of many industry leaders that most "great ideas" will fail to impact business or user outcomes meaningfully.

That's why when my friends ask about moats in AI, I tell them not to over-index on models or data. Foundation models have become commodified, and data generation is cheaper than ever.

To make a defensible AI product, your team must manage the content overload, trying to integrate millions of possible artifacts with the firehose of new methods and frameworks. Efficient search for the best way to bring it together to delight your users requires knowledge discovery.

Put differently; your team must overcome the experimentation bottleneck to improve consistently by implementing high-quality evaluation and testing.

More organizations will apply AI in business reasoning and in ways that directly impact user experience. Your moat will not lie in your collection of static artifacts but in your company's culture of experimentation, which helps you continuously improve.

Agile AI engineering with an integrated development and experiment platform.