Product
Mar 27, 2025

The Agent for Experimentation Culture

The Agent for Experimentation Culture

Low-code tools are going mainstream

Purus suspendisse a ornare non erat pellentesque arcu mi arcu eget tortor eu praesent curabitur porttitor ultrices sit sit amet purus urna enim eget. Habitant massa lectus tristique dictum lacus in bibendum. Velit ut viverra feugiat dui eu nisl sit massa viverra sed vitae nec sed. Nunc ornare consequat massa sagittis pellentesque tincidunt vel lacus integer risu.

  1. Vitae et erat tincidunt sed orci eget egestas facilisis amet ornare
  2. Sollicitudin integer  velit aliquet viverra urna orci semper velit dolor sit amet
  3. Vitae quis ut  luctus lobortis urna adipiscing bibendum
  4. Vitae quis ut  luctus lobortis urna adipiscing bibendum

Multilingual NLP will grow

Mauris posuere arcu lectus congue. Sed eget semper mollis felis ante. Congue risus vulputate nunc porttitor dignissim cursus viverra quis. Condimentum nisl ut sed diam lacus sed. Cursus hac massa amet cursus diam. Consequat sodales non nulla ac id bibendum eu justo condimentum. Arcu elementum non suscipit amet vitae. Consectetur penatibus diam enim eget arcu et ut a congue arcu.

Vitae quis ut  luctus lobortis urna adipiscing bibendum

Combining supervised and unsupervised machine learning methods

Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.

  • Dolor duis lorem enim eu turpis potenti nulla  laoreet volutpat semper sed.
  • Lorem a eget blandit ac neque amet amet non dapibus pulvinar.
  • Pellentesque non integer ac id imperdiet blandit sit bibendum.
  • Sit leo lorem elementum vitae faucibus quam feugiat hendrerit lectus.
Automating customer service: Tagging tickets and new era of chatbots

Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.

“Nisi consectetur velit bibendum a convallis arcu morbi lectus aecenas ultrices massa vel ut ultricies lectus elit arcu non id mattis libero amet mattis congue ipsum nibh odio in lacinia non”
Detecting fake news and cyber-bullying

Nunc ut facilisi volutpat neque est diam id sem erat aliquam elementum dolor tortor commodo et massa dictumst egestas tempor duis eget odio eu egestas nec amet suscipit posuere fames ded tortor ac ut fermentum odio ut amet urna posuere ligula volutpat cursus enim libero libero pretium faucibus nunc arcu mauris sed scelerisque cursus felis arcu sed aenean pharetra vitae suspendisse ac.

AI has made it much cheaper to build new software; you can iterate much faster to test improvements for your users. However, as your product matures, you can expect it will be harder to see changes that drive a significant lift to your north-star metrics.

The cost of measuring your success with AI based on metrics like the number of lines of code generated comes with a greater risk of false positives in your institutional knowledge about what matters for users of your AI app.

As AI evolves out of the labs and into production applications, evaluations have matured beyond the academic benchmarks to optimize models for user experience more directly. Engineers must consider how their maintenance efforts will scale to keep up the exponential increase in candidate features they're exploring as they efficiently filter out those that cannot be associated with a significant improvement for users and businesses.

Drawing the wrong conclusions about what is key to your AI app can hurt the evolution of your product for many experiment sprints to come. Protecting your knowledge discovery is the most valuable thing you can do with your AI initiative.

AI flexibly integrates the most relevant context to model high-quality reasoning traces. By understanding how updates in your AI app affect your business KPIs and learning from successes and failures, AI can assist in designing and implementing future experiments.

In the earliest stages of a company's maturity, the most valuable interactions with AI might occur in an IDE. However, even as pipelines stabilize and services scale, AI will be helping teams collaborate to form a consensus around the next great idea.

The benefits of fostering a culture of experimentation are compounding for early adopters as it becomes cheaper to iterate. Big tech is already flying in this regard, running 200K experiments each year!

LLMs with tools and agents have been great for quick one-off tasks. But like that online GIF converter you visit to update your slides, there's no reason to return tomorrow. When was the last time you went back through your chatGPT history?

Experimentation helps you overcome the illusion that data and model artifacts offer a moat. Models come and go, so if you're trying to build a defensible AI product, invest in ways to develop knowledge that transcends the details of the currently en-vogue weights. Invest in a culture of experimentation.

Agile AI engineering with an integrated development and experiment platform.